COT 6405 Introduction to Theory of Algorithms

Topic 5. Master Theorem

Solving the recurrences

- Substitution method
- Recursion tree
- Master method

The Master Theorem

- Given: a divide-and-conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of input size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(\mathrm{n})$
- Then, the Master Theorem gives us a cookbook for the algorithm's running time

The Master Theorem (Cont'd)

- If $T(n)=a T(n / b)+f(n)$ then

$$
\boldsymbol{T}(\boldsymbol{n})=\left\{\begin{array}{ll}
\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) & \boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a-\varepsilon}\right) \\
\Theta\left(\boldsymbol{n}^{\log _{b} a} \lg \boldsymbol{n}\right) & \boldsymbol{f}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) \\
\Theta(\boldsymbol{f (n)}) & \boldsymbol{f (n) = \Omega (\boldsymbol { n } ^ { \operatorname { l o g } _ { b } a + \varepsilon }) \text { AND }} \\
& \boldsymbol{a f (n / b) < \boldsymbol { c f } (\boldsymbol { n }) \text { for large } \boldsymbol { n }}
\end{array}\right\}
$$

The Master Theorem (Cont'd)

$$
T(n)=a T(n / b)+f(n), \text { where } a \geq 1, b>1
$$

Compare $n^{\log _{b} a}$ vs. $f(n)$:
Case 1: $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$.
($f(n)$ is polynomially smaller than $n^{\log _{b} a}$.)
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(Intuitively: cost is dominated by leaves.)

The Master Theorem (Cont'd)

Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$, where $k \geq 0$.
[This formulation of Case 2 is more general than in Theorem 4.1, and it is given in Exercise 4.6-2]
($f(n)$ is within a polylog factor of $n^{\log _{b} a}$, but not smaller.)
Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)$.
(Intuitively: cost is $n^{\log _{b} a} \lg ^{k} n$ at each level, and there are $\Theta(\lg n)$ levels.)
Simple case: $k=0 \Rightarrow f(n)=\Theta\left(n^{\log _{b} a}\right) \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.

The Master Theorem (Cont'd)

Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$ and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n.
$\left(f(n)\right.$ is polynomially greater than $n^{\log _{b} a}$.)
Solution: $T(n)=\Theta(f(n))$.
(Intuitively: cost is dominated by root.)

Using the Master Theorem, Case 1

- Solve $T(n)=9 T(n / 3)+n$
$-a=9, b=3, f(n)=n$
$-n^{\log _{\mathrm{b}} \mathrm{a}}=\mathrm{n}^{\log _{3} 9}=\mathrm{n}^{2}$
- Since $f(n)=O\left(n^{2-\varepsilon}\right)$, where $\varepsilon=1$, case 1 applies:
$\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log _{b} a}\right)$ when $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a-\varepsilon}\right)$
- Thus the solution is $T(n)=\Theta\left(n^{2}\right)$

Using the Master Theorem, Case 2

$$
\begin{array}{rl}
-T(n)=T & T(2 n / 3)+1 \\
& -a=1, b=3 / 2, f(n)=1
\end{array}
$$

$$
-n^{\log _{b} a}=n^{\log _{3 / 2} 1}=n^{0}=1 \rightarrow \text { compare with } f(n)=1
$$

- Since $f(n)=\Theta\left(n^{\log _{\circ} a}\right)=\Theta(1)$, the simple form of case 2 applies:

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg n\right) \text { when } f(n)=\Theta\left(n^{\log _{b} a}\right)
$$

- Thus the solution is $T(n)=\Theta(\lg n)$

Using the Master Theorem, Case 3

- $T(n)=3 T(n / 4)+n \lg n$
$-a=3, b=4, f(n)=n \operatorname{lgn}$
$-n^{\log _{b} a}=n^{\log _{4} 3}=\mathrm{n}^{0.793} \rightarrow$ compare with $\mathrm{f}(\mathrm{n})=\mathrm{n} \lg \mathrm{n}$
- Since $f(n)=\Omega\left(n^{0.793+\varepsilon}\right)$, where $\varepsilon=0.207$
- Also for $c=3 / 4<1, a * f(n / b)<=c * f(n)$

$$
\rightarrow 3(n / 4)^{*} \lg (n / 4)<=(3 / 4) n \lg n
$$

- case 3 applies:

$$
T(n)=\Theta(f(n)) \text { when } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)
$$

- Thus the solution is $T(n)=\Theta(n \lg n)$

Exercises

- $\mathrm{T}(\mathrm{n})=5 \mathrm{~T}(\mathrm{n} / 2)+\Theta\left(n^{2}\right)$
- $\mathrm{T}(\mathrm{n})=27 \mathrm{~T}(\mathrm{n} / 3)+\Theta\left(n^{3} \lg n\right)$
- $\mathrm{T}(\mathrm{n})=5 \mathrm{~T}(\mathrm{n} / 2)+\Theta\left(n^{3}\right)$

Exercises (cont'd)

- $T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)$
- $a=5, b=2, f(n)=\Theta\left(n^{2}\right)$
- $n^{2} \in O\left(n^{\log _{2} 5-\varepsilon}\right)$
- Case 1, $\mathrm{T}(n)=\Theta\left(n^{\log _{2} 5}\right)$

Exercises (cont'd)

- $\mathrm{T}(\mathrm{n})=27 \mathrm{~T}(\mathrm{n} / 3)+\Theta\left(n^{3} \lg n\right)$
- $\mathrm{a}=27, \mathrm{~b}=3, \mathrm{f}(\mathrm{n})=\Theta\left(n^{3} \lg n\right)$
- $n^{\log _{3} 27}=n^{3}$
- Case 2: $\mathrm{k}=1$, and $\mathrm{f}(\mathrm{n})=\Theta\left(n^{\log _{3}{ }^{27}} \lg n\right)$
- $\mathrm{T}(n)=\Theta\left(n^{3} l g^{2} n\right)$

Exercises (cont'd)

- $T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
- $\mathrm{a}=5, \mathrm{~b}=2, \mathrm{f}(\mathrm{n})=\Theta\left(n^{3}\right)$
- $n^{3} \in \Omega\left(n^{\log _{2} 5+\varepsilon}\right)$
- Case 3, check the regularity condition - $a \mathrm{f}(n / b)=5\left(\frac{n}{2}\right)^{3}=(5 / 8) n^{3} \leq c n^{3}$ for $\mathrm{c}=5 / 8<1$
- $\mathrm{T}(n)=\Theta\left(n^{3}\right)$

Limitation of the Master Theorem

- Master Theorem does not apply to all $f(n)$!
- Gap between Case 1 and 2: $f(n)$ is not polynomially smaller than $n^{\log _{b} a}$
- Gap between Case 2 and 3: $f(n)$ is not polynomially larger than $n^{\log _{b} a}$
- The regularity condition in Case 3

```
T(n)=27T(n/3)+\Theta(\mp@subsup{n}{}{3}/\operatorname{lg}n)
n}\mp@subsup{}{}{\mp@subsup{\operatorname{log}}{3}{}27}=\mp@subsup{n}{}{3}\mathrm{ vs.. n
Cannot use the master method.
```


Limitations (cont'd)

- Situations that don't look anything like that of the Master Theorem
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n}-3)+\sqrt{n}$

What to do when it doesn't apply

- The recursion-tree method

Cont'd

- The sub-problem size for a node at depth i is $n-3 i$
- The sub-problem size hits $T(1)$, when $n-3 i=$ 1 , or $i=(n-1) / 3$
- Thus, tree has $1+(n-1) / 3$ levels $(i=0,1, \ldots,(n-$ 1)/3)

Cont'd

- Each node at level i has a cost of $\sqrt{n-3 i}$
- Each level has 2^{i} nodes
- Level 0: 1 , level $1: 2$, level $2: 4$, level 3: $8 \ldots$.
- Thus, the total cost of level i is $2 \sqrt{n-3 i}$

Cont'd

- The bottom level has $2^{(n-1) / 3}$ nodes, each costing T(1)
- Assume $T(1)=c_{0}$. The total cost of the bottom level will be $c_{0} 2^{(n-1) / 3}$

Cont'd

- We add up the costs over all levels to determine the total cost for the entire tree:

$$
\begin{aligned}
\mathrm{T}(n) & =\sum_{i=0}^{\frac{n-1}{3}-1} 2^{i} \sqrt{n-3 i}+c_{0} 2^{(n-1) / 3} \\
& \leq \sum_{i=0}^{\frac{n-1}{3}-1} 2^{i} \sqrt{n}+c_{0} 2^{(n-1) / 3} \\
& =-\sqrt{n}\left(1-2^{(n-1) / 3}\right)+c_{0} 2^{(n-1) / 3} \\
& =\sqrt{n} 2^{(n-1) / 3}+c_{0} 2^{(n-1) / 3}-\sqrt{n} \\
& =\mathrm{O}\left(\sqrt{n} 2^{n / 3}\right)
\end{aligned}
$$

Processing floors and ceilings

- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor n / 2\rfloor)+\mathrm{n}$ has the solution of $\mathrm{T}(\mathrm{n})=$ $\Theta(n l g n)$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor n / 2\rfloor)+\mathrm{n}$

$$
\leq 2 \mathrm{~T}\left(\frac{n}{2}\right)+n->\mathrm{O}(\mathrm{nlgn})
$$

- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor n / 2\rfloor)+\mathrm{n}$

$$
\begin{aligned}
& \geq 2 \mathrm{~T}\left(\frac{n}{2}-1\right)+n \\
& =2 \mathrm{~T}\left(\frac{n-2}{2}\right)+(n-2)+2->\Omega(\mathrm{nlgn})
\end{aligned}
$$

Processing floors and ceilings (contd)

- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}([\mathrm{n} / 2])+\mathrm{n}$ has the solution of $\mathrm{T}(\mathrm{n})=$ $\Theta(n l g n)$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}([n / 2])+\mathrm{n}$

$$
\begin{aligned}
& \leq 2 \mathrm{~T}\left(\frac{n}{2}+1\right)+n \\
& =2 \mathrm{~T}\left(\frac{n+2}{2}\right)+(n+2)-2->\Omega(\mathrm{nlgn}) \\
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}([n / 2\rceil)+\mathrm{n} \\
& \geq 2 \mathrm{~T}\left(\frac{n}{2}\right)+n->O(n \lg n)
\end{aligned}
$$

